

Protecting our Lakes Forever: Moving from rehabilitation to prevention during a time of climate change

Norman Yan
Friends of the Muskoka Watershed

1

What are the steps we took?

- Realize something was wrong
- Identify what to do
- Generate the will to use that knowledge
- Act on that knowledge
- Ensure the action worked

What are the emerging threats to clean healthy freshwaters*

- Climate change
- Invasions
- Infectious diseases
- Hazardous Algal Blooms (HABs)
- Hydropower expansion
- Emerging contaminants

- Engineered nanomaterials
- Micro-plastic pollution
- Light and noise
- Rising salinity
- Declining calcium
- Cumulative stressors

Andrea Reid et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94: 849

Friends ... MuskokaWatershed

Which of these threaten our lakes now?

- Algal blooms (HABs) despite low and falling phosphorus
- · Calcium decline
- Invading species
- Rising salinity from road salt
- Climate change
- · And likely their interactions

7

How might stressor interactions increase the risk of algal blooms?

- Algal blooms are influenced by three main factors
 - species preferences and tolerances of lake chemistry, oxygen and temperature
 - Algal growth rates, linked to more key nutrients especially phosphorus
 - Algal death rates linked to more more grazing

Friends 44 MuskokaWatershed

15

It's analogous to a good lawn

Friends 44 MuskokaWatershed

Might the climate be a threat multiplier? More lake-effect snow Muskoka Image from NOAA

Flooding can increase erosion and perhaps nutrient supply

Climate change is likely a threat multiplier for HABs

By damaging animal plankton, that eat algae via

- more salt
- · warmer water
- increasing damage from low calcium

Increasing nutrient supply

• more erosion via floods

Improving habitat for blue-green algae

- Warmer water
- · Lower wind speeds
- Lower bottom water oxygen in late summer and fall

So shouldn't we...

- Work to reduce GHG emissions
- Protect the forests
- Protect the animal plankton
- Plug the key knowledge gaps so we know what actions might help the most

Friends 44 MuskokaWatershed

Improve early warning indicators

- Modify lake partner programs to include and report emerging threats, e.g. salt, calcium, ice duration, air and water temperature
- Implement real-time monitoring of conditions that lead to algal blooms

Friends 44 MuskokaWatershed

31

Identify the key knowledge gaps for HABs

- Why are there more fall blooms?
- What are the critical habitat thresholds that induce HABs?
- Do zooplankton losses linked to calcium decline, fall warming, road salt or the spiny water flea increase the HAB risk?
- Does calcium decline limit retention of phosphorus in forests?
- How does climate change alter all of the above?

Friends 44 MuskokaWatershed

More platforms like THELMA – on Harp Lake (DESC)

Friends 44 MuskokaWatershed

33

Finally, when we know what to do, let's foster the will to act

• For decreases in calcium

• For increases in salt, begin with

Friends 44 MuskokaWatershed

